Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator.
نویسندگان
چکیده
The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2β/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.
منابع مشابه
Conversion of the LIN-1 ETS protein of C. elegans from a sumoylated transcriptional repressor to a phosphorylated transcriptional activator
ARTICLE SUMMARY The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits the primary vulval cell fate. Here we demonstrate that LIN-1 binds two proteins predicted to repress tra...
متن کاملC. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels.
Canonical Wnt signaling converts the TCF/LEF transcription factor from repressor to activator by increasing nuclear levels of its coactivator, beta-catenin. A striking exception had been reported for Wnt-induced endoderm formation during C. elegans embryogenesis. It has long been believed that transcriptional activation of Wnt target genes in the endoderm precursor occurred due to a lowering of...
متن کاملMAP Kinase Signaling Specificity Mediated by the LIN-1 Ets/LIN-31 WH Transcription Factor Complex during C. elegans Vulval Induction
The let-23 receptor/mpk-1 MAP kinase signaling pathway induces the vulva in C. elegans. We show that MPK-1 directly regulates both the LIN-31 winged-helix and the LIN-1 Ets transcription factors to specify the vulval cell fate. lin-31 and lin-1 act genetically downstream of mpk-1, and both proteins can be directly phosphorylated by MAP kinase. LIN-31 binds to LIN-1, and the LIN-1/LIN-31 complex...
متن کاملdpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development.
The synthetic multivulva (synMuv) genes define two functionally redundant pathways that antagonize RTK/Ras signaling during Caenorhabditis elegans vulval induction. The synMuv gene lin-35 encodes a protein similar to the mammalian tumor suppressor pRB and has been proposed to act as a transcriptional repressor. Studies using mammalian cells have shown that pRB can prevent cell cycle progression...
متن کاملDaxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization.
SUMO (small ubiquitin-related modifier) modification is emerging as an important post-translational control in transcription. In general, SUMO modification is associated with transcriptional repression. Although many SUMO-modified transcription factors and co-activators have been identified, little is known about the mechanism underlying SUMOylation-elicited transcriptional repression. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 199 3 شماره
صفحات -
تاریخ انتشار 2015